
Embarcadero® DB Optimizer™ 1.5 SQL
Tuner User Guide

Copyright © 1994-2008 Embarcadero Technologies, Inc.

Embarcadero Technologies, Inc.
100 California Street, 12th Floor
San Francisco, CA 94111 U.S.A.
All rights reserved.

All brands and product names are trademarks or registered trademarks of their respective owners.
This software/documentation contains proprietary information of Embarcadero Technologies, Inc.; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse engineering of the software
is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it is delivered with
Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the Department of Defense, then it is delivered
with Restricted Rights, as defined in FAR 552.227-14, Rights in Data-General, including Alternate III (June 1987).

Information in this document is subject to change without notice. Revisions may be issued to advise of such changes and additions.
Embarcadero Technologies, Inc. does not warrant that this documentation is error-free.

 >

EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 1

Using Tuning. 2

Overview. 2

Understanding the Overview Tab . 2

Understanding the Generated Cases Tab . 3

Tuning SQL Statements . 4

Create a New Tuning Job . 5

Specify a Job Name . 6

Specify a Data Source . 6

Add SQL Statements . 7

Run Tuning Job. 8

Analyze Tuning Results . 9

Modify Tuning Results. 12

Using Oracle-Specific Features . 13

Using the Analysis Tab . 13

Using the Outlines Tab . 14

Tuning SQL Statements in the System Global Area (SGA) . 15

Additional Tuning Commands. 16

View the Source Code of a Statement or Case . 16

View Statement or Case Code in SQL Viewer . 16

Open an Explain Plan for a Statement or Case . 17

Work with Index Analysis Options. 18

Configuring Tuning . 19

Set Roles and Permissions on Data Sources . 19

Index Required Object Definitions. 20

Set Tuning Job Editor Preferences . 20

Set Generated Case Preferences . 22

DBMS Hints . 24

Oracle Hints . 25

SQL Server Hints . 30

DB2 Hints . 32

Sybase Hints . 32

USING TUNING > OVERVIEW
Using Tuning
This section provides information on tuning, its functionality, and is structured so a user can follow the information
provided to fully tune their enterprise in terms of more efficient query paths at the SQL statement level of individual
data sources.

This guide contains the following topics:

Overview

Tuning SQL Statements

Using Oracle-Specific Features

Additional Tuning Commands

Configuring Tuning

DBMS Hints

Overview
Tuning provides an easy and optimal way to discover efficient paths for queries that may not be performing as quickly
or as efficiently as they could be.

The application enables the optimization of poorly-performing SQL code through the detection and modification of
execution paths used in data retrieval. This process is performed through the following three functions:

• Hint Injection

• Index Analysis (Oracle only)

• Statistic Analysis (Oracle only)

Tuning analyzes a SQL statement and supplies execution path directives to the application that encourage the
database to use different paths.

For example, if tuning is selecting from two tables (A and B), it will enable the joining of A to B, or B to A as well as the
join form. Additionally, different joining methods such as nested loops or hash joins can be used and will be tested, as
appropriate. Tuning will select alternate paths, and enable you to change the original path to one of the alternates.
Execution paths slower than the original are eliminated, which enables you to select the quickest of the returned
selections and improve query times, overall.

This is a better method than relying on the native platform optimizer, as it can make the wrong decisions through
incorrect or missing object statistics, skewed data, correlated predicates, or a bug in the optimizer.

In the application interface, tuning is composed of two tabs:

Understanding the Overview Tab

Understanding the Generated Cases Tab

Note: When using tuning on Oracle sources, two additional tabs appear: the Analysis and Outlines tabs. For more
information on utilizing these extra features, see Using the Analysis Tab and Using the Outlines Tab, respectively.

Understanding the Overview Tab
The Overview tab provides information about the SQL statements that will be tuned.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 2

USING TUNING > OVERVIEW
• The Name and Description fields enable you to enter the name of the tuning job, as well as a description.

• The Tuning Source box provides details about the data source from which the statements to be tuned reside.

• The Tuning Candidates section specify the statements to be tuned, and is split into three tabs: Ad hoc SQL,
Database Objects, and SQL Files, depending on what source you want to tune the statement from, respectively.

Note: If you are tuning a specific schema on applicable platforms, this information appears below the Host section of
the Tuning Source parameters. For example, Schema: System indicates that tuning examines System queries. This
provides the ability to tune by user, where a table named emp might exist in different schemas, only system.emp will
be examined in this case.

Understanding the Generated Cases Tab
The Generated Cases tab provides the list of statements that are analyzed by tuning, as well as the cases suggested
by the execution process to improve them. Additional information may include statement Name, Text, Source, Cost,
and Elapsed Time values, depending on the platform.

Only the Elapsed Time statistic appears on all supported platforms. On Oracle platforms, Execution Statistics and
Other Execution Statistics columns will appear. When determining the best possible path using the Generated
Cases tab, it is best to use the Elapsed Time value as the guideline. The faster the path, the more optimized the
query will become.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 3

USING TUNING > TUNING SQL STATEMENTS
Tuning SQL Statements
A tuning job enables you to view the cost details of SQL statements on a registered data source and then select the
best, or most efficient, array of execution path directives in order to make query execution faster, therefore improving
the entire enterprise, overall.

There are four methods through which statement tuning can be activated:

• Ad hoc statement tuning via manual entry, or cutting and pasting into the tuning window.

• Database object selection, by selecting stored packages from a list on the registered data source.

• SQL file selection, by choosing an SQL file saved on the system.

• Importing statements directly from profiling.

A tuning job consists of a set of SQL statements and any analysis results you generate against a data source using
tuning. The SQL statements and analysis results that compose a tuning job can be saved in a tuning file (.tun). This
enables you to open a tuning job at a later time for inspection and analysis, to add, delete, or modify the SQL
statements, or generate new execution statistics.

The following tasks provide a high-level overview of the tuning process:

1 Create a New Tuning Job

2 Specify a Job Name

3 Specify a Data Source

4 Add SQL Statements

5 Run Tuning Job

6 Analyze Tuning Results

7 Modify Tuning Results

Note: For additional commands that fall outside the general tuning workflow, but may still be helpful, see Additional
Tuning Commands.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 4

USING TUNING > TUNING SQL STATEMENTS
Create a New Tuning Job
New tuning jobs can be created via the File > New > Tuning Job command, or by importing statements directly from
profiling. A New Tuning Job icon is also available on the Toolbar.

To create a new tuning job via the Menu or Icon command:

Select File > New > Tuning Job, or click the New Tuning Job icon on the Toolbar. Tuning opens.

You can now proceed to set up the parameters of the new job.

To create a new tuning job from profiling:

After you have run a profiling session, in profiling’s Profiling Details tab, select one or more statements, right-click,
and select Tune from the context menu. Tuning opens, pre-populated with parameters based on the statements you
selected.

To open an existing tuning job:
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 5

USING TUNING > TUNING SQL STATEMENTS
Navigate to the SQL Project tab and double-click the name of the existing tuning job.

Specify a Job Name
A job name identifies the Tuning job in the application and should be specified with this in mind.

Specify a meaningful name that clearly identifies the job in the views and dialogs of the working environment.

To name a job:

Type the name of the job in the Name field of tuning. Additionally, you can add an optional description of the job if
required.

Ensure you specify a meaningful name that identifies the job in other views and dialogs. You can save the job by
selecting File > Save or File > Save All from the Menu bar. Once a job is saved, it is added to the SQL Project view.

Specify a Data Source
The Tuning Source box identifies the data source where the SQL statements to be tuned reside. It is displayed by
Name, Type, and Host.

Multiple tuning jobs can be saved against the same data source. You can therefore set up your tuning jobs
organizationally. You might for example, set up a tuning job to tune only SQL associated with procedures or a set of
SQL sources that are functionally related. Alternatively, your tuning jobs may be organized by application.

To add a data source to a job:

Click and drag a data source from Data Source Explorer to the Tuning Source box, or click Select Data Source and
choose a data source from the dialog.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 6

USING TUNING > TUNING SQL STATEMENTS
Note: You can change a data source selection by clicking Change Data Source from the appropriate box, or by
dragging a different data source to the box from Data Source Explorer.

Add SQL Statements
Once you have created a name for the tuning job and indicated the tuning source, you need to add SQL statements to
the job that are to be tuned. All standard DML statements can be tuned (SELECT, INSERT, DELETE, and UPDATE).

Statements are added to tuning via the Tuning Candidates box.

There are three different methods for adding SQL statements to a job, as reflected by the three tabs in the Tuning
Candidates box:

• The Ad hoc SQL tab enables tuning via manual entry, or cutting and pasting into the tuning window.

• The Database Objects tab enables you to select stored packages from a list on the registered data source.

• The SQL FIles tab enables you to choose an SQL file saved on the system.

To add an ad hoc SQL statement:

Select the Ad hoc SQL tab and manually type an SQL statement in the window, or copy/paste the statement from
another source.

To add a database object:

1 Select the Database Objects and click Add. The Data Source Object Selection dialog appears.

2 Type an object name prefix or pattern in the field provided. The window below automatically populates with all
statements residing on the specified data source that match your criteria. Database objects include functions,
materialized views, packages, package bodies, procedures, stored outlines, triggers, and views.

3 Double-click on the statement you want to add. You can click Add again to repeat the process and add more
objects to the job.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 7

USING TUNING > TUNING SQL STATEMENTS
Note: Alternatively, after clicking the Database Objects tab, you can drag and drop objects from Data Source
Explorer into the Database Objects window. As long as the dragged object is a valid object type, it will be added to
the Database Objects tab.

To add an SQL file:

1 Select SQL Files and click Workspace or File System, depending on where the file you want to add is stored:

• Workspace files are files that reside in the application, meaning project files or other objects generated or
stored in the system.

• File System files are files that reside on your machine or the network.

2 Select a file from the dialog that appears. It is automatically added to the job.

Run Tuning Job
As you add SQL statements to the job, tuning-supported DML statements (SELECT, INSERT, DELETE, and UPDATE)
are parsed from the statements and added to the Generated Cases tab in preparation for the tuning function to
execute.

Each extracted statement is listed by Name, Text, and Source. Additionally, each statement will have Cost, Elapsed
Time and Other Execution Statistics values that appropriate how efficiently they execute on the specified data
source.

On the Generated Cases tab of a tuning job, the Cost, Elapsed Time and Other Execution Statistics columns let
you compare the relative efficiency of SQL statements or statement cases. While the explain plan Cost for a
statement or case is calculated when you add SQL to a tuning job, the Elapsed Time and Other Execution
Statistics columns are not populated until you execute that statement or case.

If the Tuning Status Indicator indicates that a statement or case is ready to execute, you can execute one or more
statements on the Generated Cases tab. Alternatively, the Tuning Status Indicator may show that you have to correct
the SQL or set bind variables before you can execute.

Once the tuning job has run, the Generated Cases tab provides a series of cases, per statement, that you can select
and modify based on your results.

In some cases, automatic case generation might be disabled (via the Preferences panel). If this is true, or you have
otherwise modified the Generated Cases table and can no longer generate a specific case, you can instead explicitly
generate a case for specific statements.

To execute a tuning job:

Navigate to the Generated Cases tab and modify the number of times to execute each statement in the Number of
times to execute each case field, as needed. Then click the execution icon in the lower-right side of the screen. The
tuning job runs, exacting and analyzing each statement and providing values in the appropriate columns.

To explicitly generate a case for a specific statement:

Right-click in the Name field of a statement or transformation case and select Generate Cases from the context
menu, or click the Generated Cases icon. The specified case is generated.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 8

USING TUNING > TUNING SQL STATEMENTS
Analyze Tuning Results
Once you have executed a tuning job, the Generated Cases tab reflects tuning analysis of the specified statements.

• The Generated case Expand/Collapse control lets you hide or display the hint-based cases and
transformation-based case generated for a statement.

• The Enable Execution check boxes let you enable multiple statements or cases for simultaneous execution while
the Run/Cancel Job controls let you start and stop simultaneous execution.

• The Column set Expand/Collapse controls let you expand a column set to display more of the columns within the
table.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 9

USING TUNING > TUNING SQL STATEMENTS
• The Tuning Status Indicator indicates whether a statement or case is ready to execute or has successfully
executed. The following table provides information on the Tuning Status Indicator states:

Hovering the mouse over the Tuning Status Indicator displays a tip that notes the nature of a warning or error.

Note: If a warning indicates that one or more tables do not have statistics, you can right-click the statement and select
Analyze Tables to gather statistics.

A warning can indicate an object caching error. For example, a table may not exist or not be fully qualified.
Cases cannot be generated for the associated statement.

• The explain plan-based Cost field can be expended to display a graphical representation of the values for
statements or cases. Similarly, after executing a statement or case, the Elapsed Time field can be expanded to
display a graphical representation. The bar length and colors used in the representation are intended as an aid in
comparing values, particularly among cases. For example:

In the case of both Cost and Elapsed Time, the values for the original statement are considered the baseline
values. With respect to color-coding for individual case variants, values within a degradation threshold (default
10%) and improvement threshold (default 10%) are represented with a neutral color (default light blue). Values
less than the improvement threshold are represented with a distinctive color (default green). Values greater than
the degradation threshold are shown with their own distinctive color (default red).

With respect to bar length, the baseline value of the original statement spans half the width of the column. For
child-cases of the original statement, if one or more cases show a degradation value, the largest degradation
value spans the width of the column. Bar length for all other children cases is a function of the value for that case
in comparison to the highest degradation value.

For information on specifying colors, and the improvement threshold and degradation threshold values used in
these graphical representations.

Additionally, once results have been generated you can:

• Compare Cases

• Filter and Remove Cases

• Create an Outline

Icon Description

The case has not been executed. There are no errors or warnings and the case is ready to be executed.

The case has been successfully executed.

Transformations can be applied to this case.

Execution for this case failed or was cancelled due to execution time exceeding 1.5 of original case time.

The case contains invalid bind variables (types or values).

Execution for this case failed and the case contains invalid bind variables.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 10

USING TUNING > TUNING SQL STATEMENTS
Compare Cases
You can compare cases between an original statement and one of its tuning-generated statements, or another
statement case via the Compare to Parent and Compare Selected commands, respectively.

To compare a case side-by-side with its parent:
RIght-click in the Name field of a case and select Compare to Parent from the context menu.

To compare two cases:
Select the two cases then rIght-click in the Name field of either case and select Compare Selected from the context
menu.

Filter and Remove Cases
You filter or remove cases from the Generated Cases table via the Filter or Delete icons on the Generated
Cases Toolbar.

You can filter the view on the Generated Cases tab so that hints that are not improvements on the original statement
are not displayed. Similarly, you can permanently remove cases from the tuning job. You can filter or remove:

• Non-optimizable statements

• Optimized statements

• Worst cost cases

• Worst elapsed time cases
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 11

USING TUNING > TUNING SQL STATEMENTS
When filtering, the criteria remain in effect until you change the criteria. That is, as new cases are generated, only
those cases that do not satisfy the filtering criteria are displayed. To restore an unfiltered set of cases, open the Filter
dialog and deselect the filtering options.

When removing cases, the criteria you set has no effect on cases subsequently generated.

To filter or remove cases from the Generated Cases table:
1 Click the Filter or Delete button, respectively. A Filters or Delete dialog opens.

2 Use the check boxes to select your filtering or removal criteria and then click OK.

Create an Outline
If SQL is executed by an external application or If you cannot directly modify the SQL being executed but would like to
improve the execution performance, you can create an outline. An outline instructs oracle on the execution path that
should be taken for a particular statement.

To create an outline for a change suggested by a case:
1 RIght-click in the Name field of a case and select Create Outline from the context menu.

A New Outline wizard opens.

2 On the first panel, provide an Outline name, select an Outline category, and then click Next.

A Preview Outline panel opens previewing the SQL code to create the outline.

3 Select an Action to take option of Execute or Open in new SQL editor and then click Finish.

Modify Tuning Results
As you add SQL source to the Overview tab of a tuning job, the supported DML statements are automatically parsed
out and a numbered statement record for each statement is added to the Generated Cases tab.

Cases generated from tuning candidates are alternative forms of the original statement that have been optimized or
otherwise “fixed” by the tuning function. Once you have executed a tuning job, tuning automatically generates all SQL
optimizer hint-based variations that can be applied to the statement:

• All SQL Optimizer hint-based variations that can be applied to a statement.

• A transformation-based case, if any of the eight common quick fixes can be applied to a SQL statement. This
feature leverages the DB Optimizer Code Quality Check fuctionality. See Understanding Code Quality Checks
for more information on the eight quick fixes. A transformation case, in turn, has its own set of SQL Optimizer hint
cases.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 12

USING TUNING > USING ORACLE-SPECIFIC FEATURES
Hint-based cases and the transformation-based case are a special case of the statement records added to the
Generated Cases tab as you add candidates to a tuning job. With the exception of the Text, Source, and Index
Analysis fields, cases are identical to the standard statement record. Similarly, execution, statistics collection, and
other options available for basic statement records are available for individual cases.

Once cases have been generated, if you have the required permissions on the specified data source, you can apply
the changes suggested by hint and transformation based cases in the Generated Cases table.

To apply a change:

1 Right-click on the Name field of the case that you want to use to modify the original statement and select Apply
Change. The Apply Change dialog appears.

2 Choose Execute to apply the change to the statement automatically. Alternatively, select Open in New SQL
Editor to open the modified statement in SQL Editor for manual changes or to save it to a file.

Using Oracle-Specific Features
Using the Analysis Tab

Using the Outlines Tab

Tuning SQL Statements in the System Global Area (SGA)

Using the Analysis Tab
The Analysis tab provides detailed information about statements and cases selected from the Generated Cases tab,
after a tuning job has been executed.

The Analysis tab contains information about the statement or case, its full SQL code, and tabs displaying Index
Analysis, Table Statistic, and Column Statistics and Histograms.

Statement analysis is a manual process. In order to view and analyze statement statistics, select the tab (Index
Analysis, Table Stastics, or Column Statistics and Histograms) and the statements whose statistics you want to
generate. Then click the Run icon located in the bottom left-hand side of the tab.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 13

USING TUNING > USING ORACLE-SPECIFIC FEATURES
Using the Outlines Tab
The Outlines tab provides detailed information about outlines created by the query during the statement execution
process on the Generated Cases tab.

It provides information including the SQL statement name, if the outline is enabled or not, and the Name, Category,
and Hints associated with the outline. Additionally, the Drop parameter specifies if it is dropped or not at execution
time.

In order to view outlines, the session needs to have USE_STORED_OUTLINES set prior to execution. Outlines in
tuning are created for the DEFAULT category, by default. Use the following commands to enable outlines with the
default settings:

alter system set USE_STORED_OUTILNES=true;
alter system set USE_STORED_OUTLINES=‘DEFAULT’;
alter session set USE_STORED_OUTLINES=true;

Additionally, in order for a session to USE_STORED_OUTLINES, the user requires the create any outline role. Use
the following command to set up the proper permissions:

grant create any outline to [user];
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 14

USING TUNING > USING ORACLE-SPECIFIC FEATURES
Tuning SQL Statements in the System Global Area (SGA)
On Oracle platforms, SQL statements that reside in the SGA can also be tuned. When you create a tuning job and
specify an Oracle source, an additional tab appears in the Tuning Candidates section of tuning, named Active SQL
in SGA.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 15

USING TUNING > ADDITIONAL TUNING COMMANDS
To add a statement active in the SGA:

1 Select the Active SQL in SGA tab and then click Scan. The Scan SGA wizard appears.

2 Set the filtering criteria for an SGA scan and then run the wizard. It returns all active statements on the Oracle
source.

3 Choose the specific statements and add them to the tuning job.

Additional Tuning Commands
In addition to tuning, the interface provides additional commands and functionality that enables you to view source
code, statements, and other information regarding the data source.

View the Source Code of a Statement or Case

View Statement or Case Code in SQL Viewer

Open an Explain Plan for a Statement or Case

Work with Index Analysis Options

View the Source Code of a Statement or Case
On the Generated Cases tab, you can use the Source field of a statement record to open that statement, as follows:

• The Ad Hoc SQL tab of the Overview view for SQL statements you typed or pasted into that tab

• For SQL files you added using the Overview view’s SQL Files tab, the file opens in the SQL editor

• For SQL-containing objects you added using the Overview view’s Database Objects tab, the database object is
extracted from the database and displayed in the SQL editor.

To open the source for a statement or case to show it in context:
1 Click in the Source field of a statement or case.

The source control is activated.

2 Click the source control a second time.

The SQL statement you selected in opening the resource is highlighted.

View Statement or Case Code in SQL Viewer
The Tuning job’s Generated Cases tab let you open a statement in a SQL Viewer if you want to perform either of the
following tasks:

• View the entire SQL statement.

• Set bind variables. If the Tuning Status Indicator indicates a statement or case has invalid bind variables, you
must set those variables before executing the statement or case.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 16

USING TUNING > ADDITIONAL TUNING COMMANDS
To view or set bind variables in a statement or case:
1 Click in the Text field of a statement or case.

A SQL Viewer opens on the statement or case. A set of controls for working with the statement or case bind
variables appears at the bottom of the window.

2 Use the Data Type and Value (or NULL) controls to specify the type and value for each bind variable.

3 Close the window by clicking the collapse control in the Text field of the statement record, above the SQL Viewer.

After setting bind variables, you can execute a case.

Note: Setting the bind variables in a parent statement sets the bind variables in all generated cases for that statement.

Open an Explain Plan for a Statement or Case
Any valid SQL statement added to the Generated Cases tab shows a calculated explain plan cost in the Cost field of
the statement or case record. You can open an explain plan on these statements to view the sequence of operations
used to execute the statement and the costs and other explain plan details for each operation.

To initially open an explain plan on a valid SQL statement on the Generated Cases tab:

1 Right-click in the Name field of any statement record showing a value in the Cost field.

2 Select Explain Plan from the context menu.

An Explain Plan tab opens below the Generated Cases tab.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 17

USING TUNING > ADDITIONAL TUNING COMMANDS
Explain plan operations are shown in a typical tree structure showing parent-child relationships. The following table
describes the column groups shown for each operation on the Explain Plan tab:

With the Explain Plan tab open, you can quickly switch the view to an explain plan for another SQL statement.

To change the Explain Plan tab display to another SQL statement:
1 Click in the Name field of another statement record showing a value in the Cost field.

Work with Index Analysis Options
As tuning candidates are added to a tuning job, the tuning feature automatically performs index analysis. If any
columns referenced in the WHERE clause are not the first column of an index, tuning will recommend that you create
an index on that column. This is indicated by a Click to Optimize link in the Index Analysis field for a statement.

To accept the suggestion and have tuning automatically generate an index:
1 Click the Click to Optimize link in the Index Analysis field of a statement.

A New Indexes dialog opens.

2 Optionally, modify the Index Name and select an Index Type.

3 Click Next.

The dialog is updated with an Indexes Preview panel displaying the SQL to create the index.

4 Click Finish to create the recommended index.

Column (group) Description

Plan Cost Includes the Name of the operation and the calculated explain plan cost.

Additional Information The default, collapsed view shows the Cardinality, Bytes, CPU Cost, IO Cost, and
Optimizer values. Expanded, the view also displays Access Predicates, Filter Predicates,
QB Lock Name, Distribution, Object Alias, Object Instance, Object Node, Partition ID,
Partition Start, Partition Stop, Position, Projection, Remarks, Search Columns, Temp
Space, Time, Other, and Other Tag values.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 18

USING TUNING > CONFIGURING TUNING
Configuring Tuning
This section contains information on configuring tuning. It provides information on setting up your data sources to work
with tuning functionality, as well as information regarding preferences within the application for the customization of
various features and functionality.

Set Roles and Permissions on Data Sources

Index Required Object Definitions

Set Tuning Job Editor Preferences

Set Generated Case Preferences

Set Roles and Permissions on Data Sources
In order to take advantage of all tuning features, each user must have a specific set of permissions. The code below
creates a role with all required permissions. To create the required role, execute the SQL against the target data
source, modified according to the specific needs of your site:

/* Create the role */
CREATE ROLE SQLTUNING NOT IDENTIFIED
/
GRANT SQLTUNING TO "CONNECT"
/
GRANT SQLTUNING TO SELECT_CATALOG_ROLE
/
GRANT ANALYZE ANY TO SQLTUNING
/
GRANT CREATE ANY OUTLINE TO SQLTUNING
/
GRANT CREATE ANY PROCEDURE TO SQLTUNING
/
GRANT CREATE ANY TABLE TO SQLTUNING
/
GRANT CREATE ANY TRIGGER TO SQLTUNING
/
GRANT CREATE ANY VIEW TO SQLTUNING
/
GRANT CREATE PROCEDURE TO SQLTUNING
/
GRANT CREATE SESSION TO SQLTUNING
/
GRANT CREATE TRIGGER TO SQLTUNING
/
GRANT CREATE VIEW TO SQLTUNING
/
GRANT DROP ANY OUTLINE TO SQLTUNING
/
GRANT DROP ANY PROCEDURE TO SQLTUNING
/
GRANT DROP ANY TRIGGER TO SQLTUNING
/
GRANT DROP ANY VIEW TO SQLTUNING
/
GRANT SELECT ON SYS.V_$SESSION TO SQLTUNING
/
GRANT SELECT ON SYS.V_$SESSTAT TO SQLTUNING
/
GRANT SELECT ON SYS.V_$SQL TO SQLTUNING
/
GRANT SELECT ON SYS.V_$STATNAME TO SQLTUNING
/

EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 19

USING TUNING > CONFIGURING TUNING
Once complete, you can assign the role to users who will be running tuning jobs:

/* Create a sample user*/
CREATE USER TUNINGUSER IDENTIFIED BY VALUES '05FFD26E95CF4A4B'
 DEFAULT TABLESPACE USERS
 TEMPORARY TABLESPACE TEMP
 QUOTA UNLIMITED ON USERS
 PROFILE DEFAULT
 ACCOUNT UNLOCK
/
GRANT SQLTUNING TO TUNINGUSER
/
ALTER USER TUNINGUSER DEFAULT ROLE SQLTUNING
/

Index Required Object Definitions
When connecting to a data source, the application caches a subset of the object definitions on the data source. Tuning
feature preferences allow you to modify the types of objects for which definitions are cached. To properly process
transformations, a specific set of database object definitions must be cached.

When not running tuning jobs and taking advantage of other tuning functionality, SQL editing for example, you might
disable caching of some object definitions. You may have done this to speed up data source caching for example, or
because some object definitions were not necessary to the task at hand. If you are going to run tuning jobs however,
you must ensure that tuning is indexing required objects when connecting to a data source.

To ensure tuning automatically caches required object definitions when connecting to a data source:
1 On the Window menu, choose Preferences.

A Preferences dialog opens.

2 In the left-hand pane expand the SQL Development item and then click Cache Configuration.

3 Select the check boxes associated with the following list of minimally-required object definitions:

• Foreign keys

• Functions

• Indexes

• Materialized view

• Primary keys

• Procedures

• Stored outline

• Tables

• Unique keys

• Views

4 Click OK.

Set Tuning Job Editor Preferences
Tuning job editor preferences let you control certain aspects of the appearance of items in the tuning job editor as well
as default behaviors.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 20

USING TUNING > CONFIGURING TUNING
Select Window > Preferences > SQL Development > Tuning Job Editor

Option Description

Connect to the tuning source
automatically

When you open a tuning perspective, it automatically opens the last saved tuning jobs
that were open when you closed the application. This option lets you specify whether, in
addition, you want to automatically connect to the data sources associated with these
tuning jobs. If you typically review existing tuning job archives rather than run new tuning
jobs, you may wish to explicitly connect to a data source rather than connect
automatically. The options are:

Always - automatically connects to data sources associated with tuning jobs that were
open last time you shut down tuning.

Never - automatically opens tuning job archives that were open last time you shut down
the application but does not automatically connect to the associated data sources.

Prompt - prompts you to connect to data sources associated with tuning jobs that were
open last time you shut down the application.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 21

USING TUNING > CONFIGURING TUNING
Set Generated Case Preferences
Additionally, the Generated Case preference page lets you enable or disable the automatic generation of SQL
Optimizer hint-based cases of SQL statements added to a tuning job. It also lets you indicate which specific hint types
are generated when the feature is enabled.

Select Window > Preferences > SQL Development > Tuning Job Editor > Case Generation

Use the Generate cases automatically after extracting tuning candidates control to enable or disable automatic
generation of hint-based cases, and then select the check boxes to specify the hint-based cases that are generated for

Color scheme for plan cost In the graphical representations of explain plan cost and elapsed time, tuning uses a color
scheme to highlight differences among generated cases. Values for the original statement
are treated as a baseline, and values for individual cases that are within a specified
threshold range of the baseline value are represented with a Baseline color. For cases
whose values are outside the threshold range, Improvement and Degradation colors
are used to represent values in those cases.

Case execution Lets you dictate how execution statistics are gathered.

Table analysis Lets you specify an estimation sample percentage to be used with the Analyze Tables
function.

Option Description
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 22

USING TUNING > CONFIGURING TUNING
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 23

USING TUNING > DBMS HINTS
a statement added to a tuning job.

About Statement Records

DBMS Hints
Users can provide hints to a specified platform in order to instruct data source optimizer on the best way to execute
SQL statements. Tuning automatically generates cases using these hints.

Hints can be enabled or disabled when cases are being generated by tuning on the Window > Preferences > Tuning
Job Editor > Case Generation panel. Choose a tab as it pertains to the platform you want to modify and use the
check boxes to select and de-select the hints you want to enable or disable, respectively.

The following platform hints are packaged in tuning to provide optimal efficiency when executing jobs:

Oracle Hints

SQL Server Hints

DB2 Hints

Sybase Hints

Column or column set Description

SQL Statements and Cases Identifiers for the generated statement or case:

Name - Statements are assigned a numbered identifier based on the order in which
they were added to a tuning job.

Text - An excerpt of the statement or case based on the statement type (SELECT,
INSERT, DELETE, and UPDATE). For details on how to view the entire statement or
case.

Source - Corresponds to the source type from which you added the statement.
Values can be Ad Hoc, Oracle SGA, a SQL file name, or the name of a
SQL-containing object.

Cost An explain plan-based cost estimate. This field is populated as soon as the
statement is added to the Generated Cases tab.

This column set can be expanded to display a graphical representation of the cost to
facilitate comparisons among cases.

Index Analysis Tuning automatically detects indexes that require optimization and offers you the
option to automatically optimize the index. For more information, see Work with
Index Analysis Options.

Elapsed time The execution time during the most recent execution. This column set is not
populated until you execute the statement or case.

This column set can be expanded to display a graphical representation of the
elapsed time to facilitate comparisons among cases.

Other Execution Statistics The default, collapsed view has Physical Reads and Logical Reads columns.
Expanded, there are also Consistent Gets, Block Gets, Rows Returned, CPU
time(s), Parse CPU Time(s), Row Sorts, Memory Sorts, Disk Sorts, and Open
Cursors columns. For details on these statistics, refer to your DBMS documentation.

This column set is not populated until you execute the statement or case.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 24

USING TUNING > DBMS HINTS
Oracle Hints
The following table highlights Oracle hints based on Oracle hints optimization:

Category Hint Available For Notes

ACC PATH AND_EQUAL /*+ CLUSTER (tablespec) */ -

ACC PATH CLUSTER /*+ FULL (tablespec) */ Use on Clustered Tables only

ACC PATH FULL /*+ HASH (tablespec) */ Forces a table scan even if there
are indexes.

ACC PATH HASH /*+ INDEX (tablespec [TAL:
indexspec]) */

Only to tables stored in a table
cluster.
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 25

USING TUNING > DBMS HINTS
ACC PATH INDEX /*+ INDEX_ASC (tablespec [TAL:
indexspec]) */

If no indexspec is supplied, the
optimizer will try to scan with
each avail index.

ACC PATH INDEX_ASC /*+ INDEX_COMBINE (tablespec
[indexspec [TAL: indexspec]...])
*/

Essentially the same as INDEX.

ACC PATH INDEX_COMBINE /*+ INDEX_DESC (tablespec [
indexspec [TAL: indexspec]...]) */

Forces the optimizer to try
multiple boolean combinations of
indexes.

ACC PATH INDEX_DESC /*+ INDEX_DESC (tablespec [
indexspec [TAL: indexspec]...]) */

Essentially the same as INDEX.

ACC PATH INDEX_FFS /*+ INDEX_FFS (tablespec [
indexspec [TAL: indexspec]...]) */

Forces an index scan using
specified index(es).

ACC PATH INDEX_JOIN /*+ INDEX_JOIN (tablespec [
indexspec [TAL: indexspec]...]) */

Indexes used should be based on
columns in the where clause.

ACC PATH INDEX_SS /*+ INDEX_SS (tablespec [
indexspec [TAL: indexspec]...]) */

Useful with composite indexes
where the first column is not used
in the query, but others are.

ACC PATH INDEX_SS_ASC /*+ INDEX_SS_ASC (tablespec [
indexspec [TAL: indexspec]...]) */

Essentailly the same as
INDEX_SS.

ACC PATH INDEX_SS_DESC /*+ INDEX_SS_DESC (tablespec
[indexspec [TAL: indexspec]...])
*/

Essentially the same as
INDEX_SS.

ACC PATH NO_INDEX /*+ NO_INDEX (tablespec [
indexspec [TAL: indexspec]...]) */

Directs the Optimizer not to use
specified index(es).

ACC PATH NO_INDEX_FFS /*+ NO_INDEX_FFS ([tablespec [
indexspec [TAL: indexspec]...]) */

Directs the Optmizer to exclude a
fast full scan of the specified
index(es).

ACC PATH NO_INDEX_SS /*+ NO_INDEX_SS (tablespec [
indexspec [TAL: indexspec]...]) */

Directs the Optmizer to exclude a
skip scan of the specified
index(es).

ACC PATH ROWID - -

JOIN OP HASH_AJ - -

JOIN OP HASH_SJ - -

JOIN OP MERGE_AJ - -

JOIN OP MERGE_SJ - -

JOIN OP NL_AJ - -

JOIN OP NL_SJ - -

JOIN OP NO_USE_HASH /*+ NO_USE_HASH (tablespec
[TAL: tablespec]...) */

Negates the use of hash joins for
the table specified.

JOIN OP NO_USE_MERGE /*+ NO_USE_MERGE (tablespec
[TAL: tablespec]...) */

Negates the use of sort-merge
joins for the table specified.

JOIN OP NO_USE_NL /*+ NO_USE_NL (tablespec [TAL:
tablespec]...) */

Negates the use of nested-loop
joins for the table specified.

JOIN OP USE_HASH /*+ USE_HASH (tablespec [TAL:
tablespec]...) */

Directive to join each table
specified using a hash join.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 26

USING TUNING > DBMS HINTS
JOIN OP USE_MERGE /*+ NO_USE_MERGE (tablespec
[TAL: tablespec]...) */

Directive to join each table
specified using a sort--merge
join.

JOIN OP USE_NL /*+ NO_USE_NL (tablespec [TAL:
tablespec]...) */

Directive to use a nested-loop
join with the specified tables as
the inner table.

JOIN OP USE_NL_WITH_INDEX /*+ USE_NL_WITH_INDEX (
tablespec [indexspec [TAL:
indexspec]...]) */

Directive to use a nested-loop
join with the specified table as the
inner table using the index
spcified to sastisfy at least one
predicate.

JOIN
ORDER

LEADING /*+ LEADING (tablespec) */ Directive to join the tables in the
order specified.

JOIN
ORDER

ORDERED /*+ ORDERED */ Directive to join tables in the oder
found in the FROM clause.

JOIN
ORDER

STAR - -

OPT
APPROAC
H

ALL_ROWS /*+ ALL_ROWS */ Indicates the goal is overall
throughput.

OPT
APPROAC
H

CHOOSE - -

OPT
APPROAC
H

FIRST_ROWS /*+ FIRST_ROWS (integer) */ The goal is to retrieve the first
row(s) as fast as possible.

OPT
APPROAC
H

RULE /*+ RULE */ Used to disable the COST based
optimizer.

OTHER CACHE /*+ CACHE (tablespec) */ Should be used with the FULL
hint. Places data in the
most-recently used area of the
buffer cache.

OTHER APPEND /*+ APPEND */ Directs the optimizer to INSERT
data at the end of the existing
table data using direct path I/O.

OTHER CURSOR_SHARING_EXACT /*+ CURSOR_SHARING_EXACT
*/

Directs the Optimizer to ignore
previously parsed SQL that
matches, but uses bind variables.
Forces the SQL to be parsed
unless an exact match is found.

OTHER DRIVING_SITE /*+ DRIVING_SITE (tablespec) */ Used when data is joined
remotely via DBLink. Normally
data at the remote site is returned
to the local and joined. This hint
directs the optimizer to send the
local data to the remote site for
resolution of the join.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 27

USING TUNING > DBMS HINTS
OTHER DYNAMIC_SAMPLING /*+ DYNAMIC_SAMPLING ([TAL:
tablespec] integer) */

Only used in simple SELECT
statements with a single table to
approimate cardinality if there are
no existing statistics on the table.

OTHER MODEL_MIN_ANALYSIS /*+ MODEL_MIN_ANALYSIS */ Used with spreadsheet and
model analysis to minimize
compile time.

OTHER NO_PUSH_PRED /*+ NO_PUSH_PRED [TAL: (
tablespec)] */

Opposite of PUSH_PRED, it
directs the Optimizer not to try to
push the predicate into the view.

OTHER NO_PUSH_SUBQ /*+ NO_PUSH_SUBQ] */ Opposite of PUSH_SUBQ, it
directs the Optimizer not to try
and evalute the subquery first.

OTHER NO_UNNEST /*+ NO_UNNEST */ Subqueries in the WHERE clause
are considered nested. A
subquery can be evaluated
several times fo rmultiple results
in the “parent”. Unnesting
evaluates the subquery once and
merges the results with the body
of the “parent”. This hint directs
the Optimizer NOT to unnest.

OTHER NOAPPEND /*+ NOAPPEND */ Directs the Optimizer to utilize
existing space in a table and
negates parallel processing.

OTHER NOCACHE /*+ NOCACHE (tablespec) */ Should be used with the FULL
hint. Places data in the
least-recently used area of the
buffer cache.

OTHER OPT_PARAM - -

OTHER ORDERED_PREDICATES - -

OTHER PUSH_PRED /*+ PUSH_PRED [TAL: (tablespec
)] */

Used when one of the tables in a
join is an in-line view. Forces the
predicate used to join the table
and the view into the view.

OTHER PUSH_SUBQ /*+ PUSH_SUBQ * Used with an EXISTS or IN
subselect to force evaluation of
the subquery rather than the
default behavior of the last.

OTHER UNNEST /*+ UNNEST */ Subqueries in the where clause
are considered nested. A
subquery could be evaluated
several times for multiple results
in the “parent”. Unnesting
evaluates the subquery once and
merges results with the body of
the “parent”.

PARALLEL NO_PARALLEL /*+ NO_PARALLEL (tablespec) */ Directs the Optimizer not to
parallel the specified table.

PARALLEL NO_PARALLEL_INDEX /*+ NO_PARALLEL_INDEX (
tablespec [indexspec [TAL:
indexspec]...]) */

Directs the Optimizer not to
parallel the specified index(es).

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 28

USING TUNING > DBMS HINTS
PARALLEL NO_PX_JOIN_FILTER /*+ NO_PX_JOIN_FILTER
(tablespec) */

Directs the Optimizer not to try
and join bitmap indexes in
parallel.

PARALLEL NOPARALLEL /*+ NOPARALLEL (tablespec) */ Directs the Optimizer not to
parallel the specified table.

PARALLEL NOPAARALLEL_INDEX /*+ NOPARALLEL_INDEX (
tablespec [indexspec [TAL:
indexspec]...]) */

Directs the Optimizer not to
parallel the specified index(es).

PARALLEL PARALLEL /*+ PARALLEL (tablespec [
integer | TAL:DEFAULT]) */

Number specifies degress of
parallelism (how many
processes).

PARALLEL PARALLEL_INDEX /*+ PARALLEL_INDEX (tablespec
[indexspec [TAL: indexspec]...]
integer | DEFAULT) */

Number specifies degree of
parallelism (how many
processes).

PARALLEL PQ_DISTRIBUTE /*+ PQ_DISTRIBUTE(tablespec
outer_distribution
inner_distribution) */

Used in parallel join operations to
indicate how inner and outer
tables of the joins should be
processed. The values of the
distributions are HASH,
BROADCAST, PARTITION, and
NONE. Only six combinations
table distributions are valid.

PARALLEL PX_JOIN_FILTER /*+ PX_JOIN_FILTER (tablespec)
*/

Directs the Optimizer to try and
join bitmap indexes in parallel.

QUERY
TRANS

EXPAND_GSET_TO_UNION /*+ EXPAND_GSET_TO_UNION
*/

Performs transformations on
queries that have GROUP BY
into Unions.

PARALLEL FACT /*+ FACT (tablespec) */ In the context of STAR
transformation, this table should
be considered a FACT table (as
opposed to a DIMENSION).

PARALLEL MERGE /*+ MERGE ([view | tablespec) */ Use with either an in-line view
that has a Group by or Distinct in
it as a joined table, or with the
use of IN subquery to “merge” the
“view” ito that body of the rest of
the query.

PARALLEL NO_EXPAND /*+ NO_EXPAND */ Used when OR condition
(including IN lists) is present in
the predicate to not consider
transformation to compound
query.

PARALLEL NO_FACT /*+ NO_FACT (tablespec) */ In the context of STAR
transformation this table should
not be considered a FACT table.

PARALLEL NO_MERGE /*+ NO_MERGE [([view |
TAL:tablespec)] */

Directs the Optimizer not to
“merge” the view into the query.

PARALLEL NO_QUERY_TRANSFORMATION /*+
NO_QUERY_TRANSFORMATIO
N */

Directs the Optimizer not to
transform OR, in-lists, in-line
views, and subqueries. Try it
whenever any of these conditions
are present.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 29

USING TUNING > DBMS HINTS
SQL Server Hints
The following table highlights SQL hints based on MS SQL Server hints optimization:

PARALLEL NO_REWRITE /*+ NO_REWRITE */ Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL NO_STAR_TRANSFORMATION /*+
NO_STAR_TRANSFORMATION
*/

Directs the Optimizer not to try a
Star Transformation.

PARALLEL NO_XML_QUERY_REWRITE /*+ NO_XML_QUERY_REWRITE
*/

Use only if the query is using
XML functionality.

PARALLEL NO_XMLINDEX_REWRITE /*+ NO_XMLINDEX_REWRITE */ Use only if the query is using
XML functionality.

PARALLEL NOFACT /*+ NOFACT (tablespec) */ In the context of STAR
transformation, this table should
not be considered a FACT table.

PARALLEL NOREWRITE /*+ NOREWRITE Directs the Optimizer not to use a
Materialized View, even if one is
available.

PARALLEL REWRITE /*+ REWRITE [(view [TAL: view
]...)] */

Directs the Optimizer to use a
Materialized View instead of the
underlying tables. Specify
REWRITE without additional
parameters. Oracle will determine
if it can us a Materialized View or
not.

PARALLEL STAR_TRANSFORMATION /*+ STAR_TRANSFORMATION */ Directs the Optimizer to try Star
Transformation. Only try with a 3
table or more join.

PARALLEL USE_CONCAT /*+ USE_CONCAT */ Used when the OR condition
(inclulding IN lists) is present in
the predicate to transform the
query into a compound UNION
ALL.

REAL TIME MONITOR /*+ MONITOR */ Effective only if
STATSTICS_LEVEL initialization
parameter is either set to ALL or
TYPICAL and
CONTROL_MANAGEMENT_
PACK_ACCESS is set to
DIAGNOSTIC+TUNING. Turns
on features of the Oracle
Database Tuning Pack.

REAL TIME NO_MONITOR /*+ NO_MONITOR */ See MONITOR hint.

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 30

USING TUNING > DBMS HINTS
Category Hint Available For Notes

JOIN LOOP SELECT/UPDATE/DELETE Not applicable for RIGHT OUTER or FULL
joins.

JOIN HASH SELECT/UPDATE/DELETE -

JOIN MERGE SELECT/UPDATE/DELETE -

JOIN REMOTE SELECT/UPDATE/DELETE Only for INNER JOINs. Not applicable with
COLLATE

SELECT/UPDATE/DELETE -

QUERY RECOMPILE SELECT/UPDATE/DELETE -

QUERY FORCE ORDER SELECT/UPDATE/DELETE -

QUERY ROBUST PLAN SELECT/UPDATE/DELETE -

QUERY KEEP PLAN SELECT/UPDATE/DELETE -

QUERY KEEPFIXED PLAN SELECT/UPDATE/DELETE -

QUERY EXPAND VIEWS DML Statements Only for statement containing views.

QUERY HASH GROUP SELECT Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY ORDER GROUP SELECT/UPDATE/DELETE Only when GROUP BY, COMPUTE and
DISTINCT clauses are used.

QUERY MERGE UNION SELECT Only for statements chained using UNION

QUERY HASH UNION SELECT Only for statements chained using UNION

QUERY CONCAT UNION SELECT Only for statements chained using UNION

QUERY LOOP JOIN SELECT/UPDATE/DELETE -

QUERY MERGE JOIN SELECT/UPDATE/DELETE -

QUERY HASH JOIN SELECT/UPDATE/DELETE -

TABLE INDEX() DML Statements Only for tables and views with indexes.

TABLE KEEPIDENTITY INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE KEEPDEFAULTS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE HOLDLOCK DML Statements Not applicable for SELECT statements using
FOR BROWSE clause.

TABLE IGNORE_CONSTRAINTS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE IGNORE_TRIGGERS INSERT Only for INSERT statements using
OPENROWSET clause with BULK option.

TABLE NOLOCK SELECT/UPDATE/COMPLETE Not applicable for the target table in
UPDATE/DELETE statements.

TABLE NOWAIT DML Statements -

TABLE PAGLOCK DML Statemetns -

TABLE READCOMMITED DML Statements -

TABLE READCOMMITEDLOCK SELECT/UPDATE/COMPLETE -
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 31

USING TUNING > DBMS HINTS
DB2 Hints
The following table highlights SQL hints based on IBM DB2 hints optimization:

Sybase Hints
The following table highlights SQL hints based on Sybase hints optimization:

TABLE READPAST SELECT/UPDATE/COMPLETE Not applicable for the target table in
UPDATE/DELETE statements.

TABLE READUNCOMMITED SELECT/UPDATE/COMPLETE Not applicable for the target table in
UPDATE/DELETE statements.

TABLE REPEATEABLEREAD DML Statements -

TABLE ROWLOCK DML Statements -

TABLE SERIALIZABLE DML Statements Not applicable for SELECT statements using
FOR BROWSE clause.

TABLE TABLOCK DML Statements -

TABLE TABLOCKX DML Statements -

TABLE UPDLOCK DML Statements -

TABLE XLOCK DML Statements -

TABLE FASTFIRSTROW DML Statements -

Category Hint Notes

Command SET OPTIMIZATION LEVEL For top-level SELECT statements
only

Clause optimize for <n> rows For top-level SELECT statements
only

Clause fetch first <n> rows only For SELECT statements only

Category Hint Notes

Logical distinct No explicit implementation

Logical group No explicit implementation

Logical g_join Noexplicit implementation

Logical nl_g_join Not applicable for: statements with chained
queries; select statements with group by clause
and having clause or group by clause and order
by clause

Category Hint Available For Notes
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 32

USING TUNING > DBMS HINTS
Logical m_g_join Not applicable for: statements with chained
queries; select statements with group by clause
and having clause or group by clause and order
by clause

Logical join Noexplicit implementation

Logical nl_join Not applicable for: select statements with group
by clause and having clause or group by clause
and order by clause

Logical m_join Not applicable for: select statements with group
by clause and having clause or group by clause
and order by clause

Logical h_join Not applicable for: select statements with group
by clause and having clause or group by clause
and order by clause

Logical union Noexplicit implementation

scan Noexplicit implementation

Logical scalar_agg Only used in combination with other operators.
It does not change the execution plan itself.

Logical sequence Is a keyword that wil lbe used in the
implementation of scalar_agg operator.

Logical hints We don’t support a combination of hints

Logical prop Uses a set of pre-defined values.

Logical table Used only in combinationwith other operators,
when referring tables from subqueries

Logical work_t This operator is applicable only together with
store operator

Logical in Used only in combination with other operators,
when referring tables from subqueries

Logical subq Used only in combination with other operators,
when referring tables from subqueries

Physical distinct_sorted Only for SELECT statements containing
DISTINCT, and only for tables

Physical distinct_sorting Only for SELECT statements containing
DISTINCT, and only for tables

Physical distinct_hashing Only for SELECT statements containing
DISTINCT, and only for tables

Physical group_sorted Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical group_hashing Only for SELECT statements (not working for
views) with no having and no order by clause.

Physical group_inserting Not implemented

Physical append_union_all Not applicable for: UNION chained clauses,
nested sub-selects in a from clause, if a group
by clause is present or if scalar aggregation is
present

Category Hint Notes
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 33

USING TUNING > DBMS HINTS
Physical merge_union_all Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause, or
if a group by clause is present.

Physical merge_union_distinct Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause, or
if a group by clause is present.

Physical hash_union_distinct Not applicable for: UNION ALL chained
clauses, nested sub-selects in a from clause, if
a group by clause is present, or if scalar
aggregation is present.

Physical i_scan Applied to all table references in the from
clause of the main select and of the sub select
statements except: 1. statement has
sub-selects. 2. table references has no indexes.

Physical t_scan Applied to all the table references in the from
clause of the main select and of the sub select
statements except: On Sybase 12.5 not applied
for tables in the main query if: 1. statement has
chained queries. 2. Sub queries have group by
and having clauses; and not applied to the
tables in sub selects if: 1. has select statements
in from clause of the main select. 2. sub queries
have group by and having clauses. 3. statement
has select statements in select clause. 4.
statement has parent statement and insert
statement; on Sybase 15 not applied for tables
in sub selects if: 1. has select statements in
from clause of the main select. 2. statement has
chained queries.

Physical m_scan Applied for all tables if in the where clause there
is a condition like: table1.indexedColumn1
condition body OR table1.indexedColumn2
condition body; Not applied if the LIKE operator
is used. For columns that belong to a primary
key only the first column is considered.

Physical store -

Physical store_index -

Physical sort -

Physical xchg -

Category Hint Notes
EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 34

 >

EMBARCADERO TECHNOLOGIES > EMBARCADERO® DB OPTIMIZER™ 1.5 SQL TUNER USER GUIDE 1

C
caching, transformations requirements 20
cases, generated

opening in context 16

E
explain plans

opening from tuning job 17

H
hints

opening in context 16

I
index analysis, SQL Tuner 18

P
permissions, SQL Tuner 19

R
roles, SQL Tuner 19

S
SQL

tuning 4

T
transformations

caching requirement 20
tuning jobs

editor preferences 20
index analysis 18
introduced 4
opening explain plans from 17
roles/permissions required 19
understanding generated statements 24

	Embarcadero® DB Optimizer™ 1.5 SQL Tuner User Guide
	Using Tuning
	Overview
	Understanding the Overview Tab
	Understanding the Generated Cases Tab

	Tuning SQL Statements
	Create a New Tuning Job
	Specify a Job Name
	Specify a Data Source
	Add SQL Statements
	Run Tuning Job
	Analyze Tuning Results
	Compare Cases
	Filter and Remove Cases
	Create an Outline

	Modify Tuning Results

	Using Oracle-Specific Features
	Using the Analysis Tab
	Using the Outlines Tab
	Tuning SQL Statements in the System Global Area (SGA)

	Additional Tuning Commands
	View the Source Code of a Statement or Case
	View Statement or Case Code in SQL Viewer
	Open an Explain Plan for a Statement or Case
	Work with Index Analysis Options

	Configuring Tuning
	Set Roles and Permissions on Data Sources
	Index Required Object Definitions
	Set Tuning Job Editor Preferences
	Set Generated Case Preferences

	DBMS Hints
	Oracle Hints
	SQL Server Hints
	DB2 Hints
	Sybase Hints

